Anhang

Anhang 1: Daten visualisieren

Es ist äusserst Zentral, Daten regelmässig und oft zu visualisieren. Die de facto standart Library hierfür in Python ist matplotlib. Diese Library kann man direkt ansteuern wie in diesem Tutorial beschrieben wird. Wir verwenden die library jedoch etwas anders: Dabei nutzen wir die Tatsache aus, dass sowohl pandas wie auch geopandas eingebaute Methoden (methods) haben um deren Inhalte zu visualisieren. Die Methode heisst in beiden Fällen .plot(), wie wir weiter unten noch sehen werden.

Histogramm aus List

pandas vereinfacht das Visualisieren von Daten sogar soweit, dass es sich jewils lohnt seine Listen, Dictionaries usw. zuerst in eine Series oder DataFrame zu überführen um sie zu visualisieren (wie ich zum Beispiel in Zufallszahlen generieren jeweils gemacht habe).

import random
import pandas as pd

random_gamma = [random.gammavariate(1, 1) for x in range(1000)]

random_gamma = pd.Series(random_gamma)

random_gamma.plot(kind = "hist", bins = 50)

Weitere Beispiele zu Histogrammen aus Listen findet ihr im Kapitel Zufallszahlen generieren .

Boxplot aus List

Das Visualisieren als Boxplot ist sehr ähnlich, man ersetzt "hist" lediglich durch "box. Eine komplette liste der möglichen Argumente für findet ihr hier: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.plot.html

random_gamma.plot(kind = "box")

Scatterplot aus DataFrame

Um einen Scatterplot zu erstellen, braucht es eine DataFrame (eine Series reicht hierfür nicht aus).

zeckenstiche = pd.read_csv("data/zeckenstiche.csv")
---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
Cell In[3], line 1
----> 1 zeckenstiche = pd.read_csv("data/zeckenstiche.csv")

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)
   1013 kwds_defaults = _refine_defaults_read(
   1014     dialect,
   1015     delimiter,
   (...)
   1022     dtype_backend=dtype_backend,
   1023 )
   1024 kwds.update(kwds_defaults)
-> 1026 return _read(filepath_or_buffer, kwds)

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pandas/io/parsers/readers.py:620, in _read(filepath_or_buffer, kwds)
    617 _validate_names(kwds.get("names", None))
    619 # Create the parser.
--> 620 parser = TextFileReader(filepath_or_buffer, **kwds)
    622 if chunksize or iterator:
    623     return parser

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1620, in TextFileReader.__init__(self, f, engine, **kwds)
   1617     self.options["has_index_names"] = kwds["has_index_names"]
   1619 self.handles: IOHandles | None = None
-> 1620 self._engine = self._make_engine(f, self.engine)

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1880, in TextFileReader._make_engine(self, f, engine)
   1878     if "b" not in mode:
   1879         mode += "b"
-> 1880 self.handles = get_handle(
   1881     f,
   1882     mode,
   1883     encoding=self.options.get("encoding", None),
   1884     compression=self.options.get("compression", None),
   1885     memory_map=self.options.get("memory_map", False),
   1886     is_text=is_text,
   1887     errors=self.options.get("encoding_errors", "strict"),
   1888     storage_options=self.options.get("storage_options", None),
   1889 )
   1890 assert self.handles is not None
   1891 f = self.handles.handle

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pandas/io/common.py:873, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
    868 elif isinstance(handle, str):
    869     # Check whether the filename is to be opened in binary mode.
    870     # Binary mode does not support 'encoding' and 'newline'.
    871     if ioargs.encoding and "b" not in ioargs.mode:
    872         # Encoding
--> 873         handle = open(
    874             handle,
    875             ioargs.mode,
    876             encoding=ioargs.encoding,
    877             errors=errors,
    878             newline="",
    879         )
    880     else:
    881         # Binary mode
    882         handle = open(handle, ioargs.mode)

FileNotFoundError: [Errno 2] No such file or directory: 'data/zeckenstiche.csv'
zeckenstiche.plot("x", "y", kind = "scatter")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[4], line 1
----> 1 zeckenstiche.plot("x", "y", kind = "scatter")

NameError: name 'zeckenstiche' is not defined

Statische Karte aus GeoDataFrame

Um aus GeoDataFrames Karten zu machen verwendet man ebenfalls die .plot() Methode. Um wirklich schöne Karten mit Python herzustellen braucht man viel Übung. Für eine schnelle Visualisierung reicht aber die .plot() Methode.

import geopandas as gpd

zeckenstiche = gpd.read_file("data/zeckenstiche.gpkg")
wald = gpd.read_file("data/wald.gpkg")
---------------------------------------------------------------------------
DataSourceError                           Traceback (most recent call last)
Cell In[5], line 3
      1 import geopandas as gpd
----> 3 zeckenstiche = gpd.read_file("data/zeckenstiche.gpkg")
      4 wald = gpd.read_file("data/wald.gpkg")

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/geopandas/io/file.py:294, in _read_file(filename, bbox, mask, columns, rows, engine, **kwargs)
    291             from_bytes = True
    293 if engine == "pyogrio":
--> 294     return _read_file_pyogrio(
    295         filename, bbox=bbox, mask=mask, columns=columns, rows=rows, **kwargs
    296     )
    298 elif engine == "fiona":
    299     if pd.api.types.is_file_like(filename):

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/geopandas/io/file.py:547, in _read_file_pyogrio(path_or_bytes, bbox, mask, rows, **kwargs)
    538     warnings.warn(
    539         "The 'include_fields' and 'ignore_fields' keywords are deprecated, and "
    540         "will be removed in a future release. You can use the 'columns' keyword "
   (...)
    543         stacklevel=3,
    544     )
    545     kwargs["columns"] = kwargs.pop("include_fields")
--> 547 return pyogrio.read_dataframe(path_or_bytes, bbox=bbox, **kwargs)

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pyogrio/geopandas.py:261, in read_dataframe(path_or_buffer, layer, encoding, columns, read_geometry, force_2d, skip_features, max_features, where, bbox, mask, fids, sql, sql_dialect, fid_as_index, use_arrow, on_invalid, arrow_to_pandas_kwargs, **kwargs)
    256 if not use_arrow:
    257     # For arrow, datetimes are read as is.
    258     # For numpy IO, datetimes are read as string values to preserve timezone info
    259     # as numpy does not directly support timezones.
    260     kwargs["datetime_as_string"] = True
--> 261 result = read_func(
    262     path_or_buffer,
    263     layer=layer,
    264     encoding=encoding,
    265     columns=columns,
    266     read_geometry=read_geometry,
    267     force_2d=gdal_force_2d,
    268     skip_features=skip_features,
    269     max_features=max_features,
    270     where=where,
    271     bbox=bbox,
    272     mask=mask,
    273     fids=fids,
    274     sql=sql,
    275     sql_dialect=sql_dialect,
    276     return_fids=fid_as_index,
    277     **kwargs,
    278 )
    280 if use_arrow:
    281     meta, table = result

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pyogrio/raw.py:196, in read(path_or_buffer, layer, encoding, columns, read_geometry, force_2d, skip_features, max_features, where, bbox, mask, fids, sql, sql_dialect, return_fids, datetime_as_string, **kwargs)
     56 """Read OGR data source into numpy arrays.
     57 
     58 IMPORTANT: non-linear geometry types (e.g., MultiSurface) are converted
   (...)
    191 
    192 """
    194 dataset_kwargs = _preprocess_options_key_value(kwargs) if kwargs else {}
--> 196 return ogr_read(
    197     get_vsi_path_or_buffer(path_or_buffer),
    198     layer=layer,
    199     encoding=encoding,
    200     columns=columns,
    201     read_geometry=read_geometry,
    202     force_2d=force_2d,
    203     skip_features=skip_features,
    204     max_features=max_features or 0,
    205     where=where,
    206     bbox=bbox,
    207     mask=_mask_to_wkb(mask),
    208     fids=fids,
    209     sql=sql,
    210     sql_dialect=sql_dialect,
    211     return_fids=return_fids,
    212     dataset_kwargs=dataset_kwargs,
    213     datetime_as_string=datetime_as_string,
    214 )

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pyogrio/_io.pyx:1239, in pyogrio._io.ogr_read()

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pyogrio/_io.pyx:219, in pyogrio._io.ogr_open()

DataSourceError: data/zeckenstiche.gpkg: No such file or directory

Einfache Plots ohne anpassung:

wald.plot()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[6], line 1
----> 1 wald.plot()

NameError: name 'wald' is not defined

Anpassung der Plot Grösse:

wald.plot(figsize = (5,5))
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[7], line 1
----> 1 wald.plot(figsize = (5,5))

NameError: name 'wald' is not defined

Choroplethenkarte Karte

from matplotlib.colors import ListedColormap

my_cmap = ListedColormap(["green","lightgrey"])
wald.plot(column = "Wald_text", legend = True, cmap = my_cmap)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[8], line 4
      1 from matplotlib.colors import ListedColormap
      3 my_cmap = ListedColormap(["green","lightgrey"])
----> 4 wald.plot(column = "Wald_text", legend = True, cmap = my_cmap)

NameError: name 'wald' is not defined

Mehrere Layers:

base = wald.plot(column = "Wald_text", legend = True, cmap = my_cmap)
zeckenstiche.plot(color = "Red", ax = base)
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[9], line 1
----> 1 base = wald.plot(column = "Wald_text", legend = True, cmap = my_cmap)
      2 zeckenstiche.plot(color = "Red", ax = base)

NameError: name 'wald' is not defined

Interaktive Karten aus GeoDataFrame

Weitere Informationen dazu findet ihr hier: https://geopandas.org/docs/user_guide/interactive_mapping.html

Vollautomatisch, ohne Anpassungen:

zeckenstiche.explore()

Zeckenstiche Rot eingefärbt:

zeckenstiche.explore(color = "red")

Zeckenstiche nach "accuracy" eingefärbt:

zeckenstiche.explore(column = "accuracy")

Wald nach "Wald_text" eingefärbt (beachte, dass ich my_cmap weiter oben erstellt habe!):

wald.explore(column = "Wald_text", cmap = my_cmap)

Zwei übereinander gelagerte Layers:

base = wald.explore(column = "Wald_text", cmap = my_cmap)
zeckenstiche.explore(m = base, color = "red")
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[10], line 1
----> 1 base = wald.explore(column = "Wald_text", cmap = my_cmap)
      2 zeckenstiche.explore(m = base, color = "red")

NameError: name 'wald' is not defined

Anhang 2: Geodaten visualisieren

In folgenden Beispielen zeigen wir noch ein paar einfache Wege, wie ihr die Zeckenstichdaten visualisieren könnt.

import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt
import descartes

wald = gpd.read_file("data/wald.gpkg")
zeckenstiche_full = pd.read_csv("data/zeckenstiche_full.csv")

geom = gpd.points_from_xy(zeckenstiche_full['x'], zeckenstiche_full['y'])

zeckenstiche_gpd = gpd.GeoDataFrame(
    zeckenstiche_full,
    geometry=geom,
    crs = 2056)
---------------------------------------------------------------------------
DataSourceError                           Traceback (most recent call last)
Cell In[11], line 6
      3 import matplotlib.pyplot as plt
      4 import descartes
----> 6 wald = gpd.read_file("data/wald.gpkg")
      7 zeckenstiche_full = pd.read_csv("data/zeckenstiche_full.csv")
      9 geom = gpd.points_from_xy(zeckenstiche_full['x'], zeckenstiche_full['y'])

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/geopandas/io/file.py:294, in _read_file(filename, bbox, mask, columns, rows, engine, **kwargs)
    291             from_bytes = True
    293 if engine == "pyogrio":
--> 294     return _read_file_pyogrio(
    295         filename, bbox=bbox, mask=mask, columns=columns, rows=rows, **kwargs
    296     )
    298 elif engine == "fiona":
    299     if pd.api.types.is_file_like(filename):

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/geopandas/io/file.py:547, in _read_file_pyogrio(path_or_bytes, bbox, mask, rows, **kwargs)
    538     warnings.warn(
    539         "The 'include_fields' and 'ignore_fields' keywords are deprecated, and "
    540         "will be removed in a future release. You can use the 'columns' keyword "
   (...)
    543         stacklevel=3,
    544     )
    545     kwargs["columns"] = kwargs.pop("include_fields")
--> 547 return pyogrio.read_dataframe(path_or_bytes, bbox=bbox, **kwargs)

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pyogrio/geopandas.py:261, in read_dataframe(path_or_buffer, layer, encoding, columns, read_geometry, force_2d, skip_features, max_features, where, bbox, mask, fids, sql, sql_dialect, fid_as_index, use_arrow, on_invalid, arrow_to_pandas_kwargs, **kwargs)
    256 if not use_arrow:
    257     # For arrow, datetimes are read as is.
    258     # For numpy IO, datetimes are read as string values to preserve timezone info
    259     # as numpy does not directly support timezones.
    260     kwargs["datetime_as_string"] = True
--> 261 result = read_func(
    262     path_or_buffer,
    263     layer=layer,
    264     encoding=encoding,
    265     columns=columns,
    266     read_geometry=read_geometry,
    267     force_2d=gdal_force_2d,
    268     skip_features=skip_features,
    269     max_features=max_features,
    270     where=where,
    271     bbox=bbox,
    272     mask=mask,
    273     fids=fids,
    274     sql=sql,
    275     sql_dialect=sql_dialect,
    276     return_fids=fid_as_index,
    277     **kwargs,
    278 )
    280 if use_arrow:
    281     meta, table = result

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pyogrio/raw.py:196, in read(path_or_buffer, layer, encoding, columns, read_geometry, force_2d, skip_features, max_features, where, bbox, mask, fids, sql, sql_dialect, return_fids, datetime_as_string, **kwargs)
     56 """Read OGR data source into numpy arrays.
     57 
     58 IMPORTANT: non-linear geometry types (e.g., MultiSurface) are converted
   (...)
    191 
    192 """
    194 dataset_kwargs = _preprocess_options_key_value(kwargs) if kwargs else {}
--> 196 return ogr_read(
    197     get_vsi_path_or_buffer(path_or_buffer),
    198     layer=layer,
    199     encoding=encoding,
    200     columns=columns,
    201     read_geometry=read_geometry,
    202     force_2d=force_2d,
    203     skip_features=skip_features,
    204     max_features=max_features or 0,
    205     where=where,
    206     bbox=bbox,
    207     mask=_mask_to_wkb(mask),
    208     fids=fids,
    209     sql=sql,
    210     sql_dialect=sql_dialect,
    211     return_fids=return_fids,
    212     dataset_kwargs=dataset_kwargs,
    213     datetime_as_string=datetime_as_string,
    214 )

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pyogrio/_io.pyx:1239, in pyogrio._io.ogr_read()

File ~/miniconda3/envs/modul-agi/lib/python3.12/site-packages/pyogrio/_io.pyx:219, in pyogrio._io.ogr_open()

DataSourceError: data/wald.gpkg: No such file or directory

Kernel Density Plot

Mit der Erweiterung seaborn lassen sich mit wenigen Zeilen Code eine Kernel Density rechnen und visualisieren. Siehe nachstehenden Code:

import seaborn as sns

f, ax = plt.subplots(1, figsize=(6, 6))
wald.boundary.plot(linewidth=0.1, ax=ax)
zeckenstiche_gpd.plot(color='red', linewidth=0.1, ax=ax)

sns.kdeplot(x = zeckenstiche_full.x, y= zeckenstiche_full.y,shade = False,n_levels = 10, cmap = "viridis", ax = ax)

ax.set_axis_off()
plt.show()
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[12], line 1
----> 1 import seaborn as sns
      3 f, ax = plt.subplots(1, figsize=(6, 6))
      4 wald.boundary.plot(linewidth=0.1, ax=ax)

ModuleNotFoundError: No module named 'seaborn'

Hintergrundkarte

Mit der Erweiterung contextily kann man sehr schnell und einfach Hintergrundkarten in den Plot einbinden. Dafür muss das GeoDataFrame vorher aber in WGS84 Koordinaten (EPSG 3857) konvertiert werden (mit to_crs, s.u.).

import contextily as ctx

f, ax = plt.subplots(1, figsize=(6, 6))
zeckenstiche_gpd.to_crs(epsg = 3857).plot(ax = ax)
ctx.add_basemap(ax)

ax.set_axis_off()
plt.show()
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[13], line 1
----> 1 import contextily as ctx
      3 f, ax = plt.subplots(1, figsize=(6, 6))
      4 zeckenstiche_gpd.to_crs(epsg = 3857).plot(ax = ax)

ModuleNotFoundError: No module named 'contextily'

KDE mit Hintergrundkarte

Kernel Denisty und Hintergrundkarte können auch kombiniert werden:

lat = zeckenstiche_gpd.to_crs(epsg = 3857).geometry.x
lng = zeckenstiche_gpd.to_crs(epsg = 3857).geometry.y

f, ax = plt.subplots(1, figsize=(6, 6))

sns.kdeplot(x = lat,y = lng,shade = False,n_levels = 25, cmap = "viridis", ax = ax)
ctx.add_basemap(ax)

ax.set_axis_off()
plt.show()
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[14], line 1
----> 1 lat = zeckenstiche_gpd.to_crs(epsg = 3857).geometry.x
      2 lng = zeckenstiche_gpd.to_crs(epsg = 3857).geometry.y
      4 f, ax = plt.subplots(1, figsize=(6, 6))

NameError: name 'zeckenstiche_gpd' is not defined